View on GitHub


Machine learning preparatory week @PSL


  1. Machine learning: history, application, successes
  2. Introduction to machine learning
  3. Supervised machine learning models
  4. Scikit-learn: estimation and pipelines
  5. Optimization for linear models
  6. Optimization for machine learning
  7. Deep learning: convolutional neural networks
  8. Unsupervised learning
  9. Introduction to Relational Database Management Systems (video)

Practical works

Links open Colab notebooks. You may also clone this repository and work locally.

  1. Monday: Python basics
  2. Tuesday: Practice of Scikit-learn
  3. Wednesday: Optimization
  4. Thursday: Classification with PyTorch and GPUs
  5. Friday: Databases in practice with PostgreSQL and Python, Solutions



Some material of this course was borrowed and adapted:


All the code in this repository is made available under the MIT license unless otherwise noted.

The slides are published under the terms of the CC-By 4.0 license.