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Course outline

• Introduction to Big Data  

• The ubiquitous frameworks: Hadoop, MapReduce 
and Spark 

• Hands-on/lab-session
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What is Big Data? 
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From “Understanding Big Data” by IBM 

• Hint: you are part of it. 

• The 3 V’s characterising Big data 



The 3 V’s, more in detail
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Enablers

• Increasing of storage capacity 

• Increasing of processing power 

• Availability of massive amounts of data 
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Enablers

• Increasing of storage capacity 

• Increasing of processing power 

• Availability of massive amounts of data 

Are we missing anything?
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Trends for data analytics
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The age of analytics:
Competing in a data-driven world

 

Data and analytics fuel 6 disruptive models that 
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The age of analytics: Competing in a data-driven world.  
Report McKinsey Global Institute December 2016



Fortunately we have a winner 

Typical Hadoop stack:  
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Three main steps in data   
analytics 

• Hadoop ecosystem plays a crucial role in each of them 

• The first twos are about data preparation: at least 50% of the data scientist 
work! 

• As seen before, companies often struggle in recruiting and retain talents for 
each of these 3 tasks
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7McKinsey Global Institute The age of analytics: Competing in a data-driven world

Over the long term, value will likely accrue to providers of analytics and data 
platform owners 
Many organizations are hungry to use data to grow and improve performance—and multiple 
players see market opportunities in this explosion of demand. There are typically many 
steps between raw data and actual usage, and there are openings to add value at various 
points along the way. To simplify, we focused on three categories of players in the data 
ecosystem, recognizing that some players might fill more than one role.

 � Data generation and collection: The source and platform where data are 
initially captured.

 � Data aggregation: Processes and platforms for combining data from multiple sources.

 � Data analysis: The gleaning of insights from data that can be acted upon.

Usually, the biggest opportunities are unlikely to be in directly monetizing data. As data 
become easier to collect and as storage costs go down, most data are becoming more 
commoditized. Proxies now exist for data that were once scarce; Google Trends, for 
instance, offers a free proxy for public sentiment data that previously would have been 
collected through phone surveys. 

However, there are important exceptions to the commoditization trend. When access is 
limited by physical barriers or collection is expensive, data will hold its value. An important 
case in which value can accrue to data generation and collection involves market-making 
or social media platforms with strong network effects. In certain arenas, a small number 
of players establish such critical mass that they are in a position to collect and own the 
vast majority of user behavior data generated in these ecosystems. But in the absence of 
these types of exceptional supply constraints, simply selling raw data is likely to generate 
diminishing returns over time. 

Another role in the data ecosystem involves aggregating information from different sources. 
In general, this capability is becoming more accessible and less expensive, but this role can 
be valuable when certain conditions apply. Data aggregation adds value when combining, 
processing, and aggregating data is technically difficult or organizationally challenging 
(for example, when aggregating involves coordinating access across diverse sources). 
Some companies have built business models around serving as third-party aggregators 
for competitors within a given industry, and this model has the potential to create network 
effects as well. 

The third part of the data ecosystem, analytics, is where we expect to see the biggest 
opportunities in the future. The provider of analytics understands the value being generated 
by those insights and is thus best positioned to capture a portion of that value. Data 
analytics tools, like other software, already command large margins. Combining analytical 
tools with business insights for decision makers is likely to multiply the value even further. 
Increasingly complex data and analytics will require sophisticated translation, and use 
cases will be very firm-specific. Bad analysis can destroy the potential value of high-quality 
data, while great analysis can squeeze insights from even mediocre data. In addition, the 
scarcity of analytics talent is driving up the cost of these services. Given the size of the 
opportunities, firms in other parts of the ecosystem are scrambling to stake out a niche in 
the analytics market. Data aggregators are offering to integrate clients’ data and perform 
analysis as a service. One-stop shops offering integrated technology stacks are adding 
analytics capabilities, such as IBM Watson, as are other professional services and business 
intelligence firms.

The age of analytics: Competing in a data-driven world.  
Report McKinsey Global Institute April 2016



The Hadoop Distributed 
Filesystem - HDFS 

• Highly scalable, distributed, load-balanced, portable, 
and fault-tolerant (with built-in redundancy at the 
software level) storage component of Hadoop. 

• It provides a layer for storing Big Data in a traditional, 
hierarchical, Linux-like  file organization of directories 
and files. 

• It has been designed to run on commodity hardware.
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Main assumptions behind its 
design

• Horizontal scalability 

• Fault tolerance 

• Capability to run on commodity hardware 

• Write once, read many times 

• Data locality 

• File system namespace, relying on traditional hierarchical file organization. 

• Streaming access and high throughput:  

• reading the data in the fastest possible way (instead of focusing on the speed 
of the data write). 

• reading data from multiple nodes, in parallel.
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Typical cluster architecture 
• One or more racks.  

• Typically  30 to 40 node servers per 
rack with a 1GB switch for the rack. 

• The cluster switch is normally 1GB or 
10GB. 

• Architecture of single node server can 
vary.  

• More disk capacity and network 
throughput for operations like 
indexing, grouping, data importing/
exporting, data transformation. 

• More CPU capacity for operations 
like  clustering/classification, NLP,  
feature extraction.

Rack awareness
To get maximum performance out of Hadoop, it is important to configure Hadoop so
that it knows the topology of your network. If your cluster runs on a single rack, then
there is nothing more to do, since this is the default. However, for multirack clusters,
you need to map nodes to racks. By doing this, Hadoop will prefer within-rack transfers
(where there is more bandwidth available) to off-rack transfers when placing
MapReduce tasks on nodes. HDFS will be able to place replicas more intelligently to
trade-off performance and resilience.

Network locations such as nodes and racks are represented in a tree, which reflects the
network “distance” between locations. The namenode uses the network location when
determining where to place block replicas (see “Network Topology and Ha-
doop” on page 71); the MapReduce scheduler uses network location to determine
where the closest replica is as input to a map task.

For the network in Figure 9-1, the rack topology is described by two network locations,
say, /switch1/rack1 and /switch1/rack2. Since there is only one top-level switch in this
cluster, the locations can be simplified to /rack1 and /rack2.

The Hadoop configuration must specify a map between node addresses and network
locations. The map is described by a Java interface, DNSToSwitchMapping, whose
signature is:

public interface DNSToSwitchMapping {
  public List<String> resolve(List<String> names);
}

Figure 9-1. Typical two-level network architecture for a Hadoop cluster

298 | Chapter 9: Setting Up a Hadoop Cluster
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• Example of balanced single node 
architecture proposed by Cloudera. 

• 2-24 1-4TB hard disks in a JBOD (Just a 
Bunch Of Disks) configuration (no RAID)  

• 2 quad-/hex-/octo-core CPUs, running at 
least 2-2.5GHz 

• 64-512GB of RAM 



HDFS

References : Hadoop: The Definitive Guide - Tom White. 

Apache Hadoop Yarn - Arun C.Murty, Vinod Kumar Vavilapalli, et al.  

Big Data Analytics with Microsoft HDIinsight - Manpreet Singh, Ashrad Ali. 



Name nodes and Data nodes
• To store a file, HDFS client asks 

meta information to the Name 
node 

• The client then interacts only with 
Data Nodes 

• It splits the file  into one or more 
chunks or blocks (64 MB by 
default, configurable)  

• And send them to a set of Data 
Nodes slaves previously 
indicated by the Name node 

• Each block is replicated n times 
(n=3 by default, configurable)

ptg18591983
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 FIGURE 3.1 
 How a client reads and writes to and from HDFS.         

 While storing a file, HDFS internally splits it into one or more blocks (chunks of 64MB, by 
default, which is configurable and can be changed at cluster level or when each file is created). 
These blocks are stored in a set of slaves, called data nodes, to ensure that parallel writes or reads 
can be done even on a single file. Multiple copies of each block are stored per replication factor 
(which is configurable and can be changed at the cluster level, or at file creation, or even at a 
later stage for a stored file) for making the platform  fault tolerant.  

 The name node is also responsible for managing file system namespace operations, including 
opening, closing, and renaming files and directories. The name node records any changes to 
the file system namespace or its properties. The name node contains information related to the 
replication factor of a file, along with the map of the blocks of each individual file to data 
nodes where those blocks exist. Data nodes are responsible for serving read and write requests 
from the HDFS clients and perform operations such as block creation, deletion, and replication 
when the name node tells them to. Data nodes store and  retrieve blocks when they are told 
to (by the client applications or by the name node), and they report back to the name node 
periodically with lists of blocks that they are storing, to keep the name node up to date on the 
current status.  

 A client application talks to the name node to get metadata information about the file system. 
It connects data nodes directly so that they can transfer data back and forth between the client 
and the data nodes.  

  NOTE 

 The client communicates with the name node to get only metadata; the actual data transfer happens 
between the client and the data nodes. The name node is not involved in the actual data transfer.   

From the Library of Dario Colazzo

• Name node = a server node 
running the Name node daemon 
(service in Windows) 

• Data Node = a server node running 
the Data node daemon 



File split in HDFS

• In Hadoop you have plenty of configuration files 

• For instance, block size is set in the hdfs-site.xml file  
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  File Split in HDFS  
 As discussed earlier, HDFS works best with small numbers of very large files for storing large 
data sets that the applications need. As you can see in  Figure   3.3   , while storing files, HDFS 
 internally splits a file content into one or more data blocks (chunks of 64MB, by default, which 
is  configurable and can be changed when needed at the cluster instance level for all the file 
writes or when each specific file is created). These data blocks are stored on a set of slaves called 
data nodes, to ensure a parallel data read or write.  

 
 FIGURE 3.3 
 File split process when writing to HDFS.         

 All blocks of a file are the same size except the last block, which can be either the same size or 
smaller. HDFS stores each file as a sequence of blocks, with each block stored as a separate file in 
the local file system (such as NTFS).  

 Cluster-wide block size is controlled by the  dfs.blocksize  configuration property in the 
 hdfs-site.xml  file. The  dfs.blocksize  configuration property applies for files that are 
 created without a block size specification. This configuration has a default value of 64MB 
and usually varies from 64MB to 128MB, although many installations now use 128MB. In 
Hadoop 2.0, the default block is 128MB (see  Table   3.3   ). The block size can continue to grow 
as transfer speeds grow with new generations of disk drives.  

  TABLE 3.3   Block Size Configuration   

  Name     Value     Description   

 dfs.
blocksize  

 134217728   The default block size for new files, in bytes. You can use the 
following suffix (case insensitive): k (kilo), m (mega), g (giga), 
t (tera), p (peta), e (exa) to specify the size (such as 128k, 512m, 
1g, and so on). Or, provide the complete size in bytes, such as 
134217728 for 128MB.  

From the Library of Dario Colazzo
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 created without a block size specification. This configuration has a default value of 64MB 
and usually varies from 64MB to 128MB, although many installations now use 128MB. In 
Hadoop 2.0, the default block is 128MB (see  Table   3.3   ). The block size can continue to grow 
as transfer speeds grow with new generations of disk drives.  

  TABLE 3.3   Block Size Configuration   

  Name     Value     Description   
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Block placement and replication

ptg18591983
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  NOTE 

 Impact of Changing the  dfs.blocksize   
 When you change the  dfs.blocksize  configuration setting in the  hdfs-site.xml  configuration 
file for an existing cluster, it does not affect the already-written files (or blocks). This new setting is 
effective for new files only. If you want to make it applicable to already written files (or existing files 
or blocks from HDFS), you must write a logic to rewrite those files to HDFS again (this automatically 
picks up the new configuration and splits the blocks in size, as defined in the new configuration).    

  Block Placement and Replication in HDFS  
 You have already seen that each file is broken in multiple data blocks. Now you can explore 
how these data blocks get stored. By default, each block of a file is stored three times on three 
different data nodes: The replication factor configuration property has a default value of  3  
(see  Table   3.4   ).  

  TABLE 3.4   Block Replication Configuration  

  Name     Value     Description   

 dfs.replication   3   Default block replication. The actual number of replications 
can be specified when the file is created. The default is 
used if replication is not specified in create time.  

 dfs.replication.max   512   Maximum block replication.  

 dfs.namenode.
replication.min  

 1   Minimal block replication.  

 When a file is created, an application can specify the number of replicas of each block of the file 
that HDFS must maintain. Multiple copies or replicas of each block makes it fault tolerant: If one 
copy is not accessible or gets corrupted, the data can be read from the other copy. The number of 
copies of each block is called the replication factor for a file, and it applies to all blocks of a file.  

 While writing a file, or even for an already stored file, an application can override the default 
 replication factor configuration and specify another replication factor for that file. For example, the 
replication factor can be specified at file creation time and can be even changed later, when needed.  

  NOTE 

 Replication Factor for a File  
 An application or job can also specify the number of replicas of a file that HDFS should maintain. 
The number of copies or replicas of each block of a file is called the  replication factor  of that file.   

From the Library of Dario Colazzo

• By default each block is stored 3 times in three different Data 
nodes, for fault tolerance 

• When a file is created, an application can specify the number of 
replicas of each block of the file that HDFS must maintain. The 
upper bound dfs.replication.max must be respected. 

• Settings in  hdfs-site.xml
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Block placement and replication
• For robustness, the ideal approach would be to store block replicas in different 

racks. 
• For efficiency, it is better to store all replicas in the same rack. 
• Balanced Hadoop approach: store one block on the client Data node where the file 

originates (or a not too busy node chosen by the Name node) and the  two other 
blocks in a different rack (if any). 

• This requires to configure the cluster for RackAwareness 
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Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes in the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topology
into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

Figure 3-5. A typical replica pipeline

Overall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model
A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:
    Path p = new Path("p");
    fs.create(p);
    assertThat(fs.exists(p), is(true));

74 | Chapter 3: The Hadoop Distributed Filesystem
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Heartbeats
• All data nodes periodically (each 3 

seconds) send heartbeat signals to the 
name node. 

• They contain crucial information about 
stored blocks, percentage of used 
storage, current communication load, etc. 

• Hearth beat contents are crucial for the 
Name Node to build and maintain 
metadata information 

• The NameNode does not directly call the 
Data Nodes. It uses replies to heartbeats 
to ask replication to other nodes, remove 
local block replicas, etc. 

 19
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 FIGURE 3.13 
 The name node updates its metadata based on information it receives from the data nodes.         

 The name node thus is aware of all the active or functioning data nodes of the cluster and what 
block each one of them contains. You can see that the file system namespace contains the infor-
mation about all the blocks from each data node (see  Figure   3.13   ).  

 Now imagine that data node 4 has stopped working. In this case, data node 4 stops  sending 
heartbeat signals to the name node. The name node concludes that data node 4 has died. 
After a certain period of time, the name nodes concludes that data node 4 is not in the cluster 
 anymore and that whatever data node 4 contained should be replicated or load-balanced to the 
available data nodes.  

 As you can see in  Figure   3.14   , the dead data node 4 contained blocks B and C, so name node 
instructs other data nodes, in the cluster that contain blocks B and C, to replicate it in manner; it 
is load-balanced and the replication factor is maintained for that specific block. The name node 
then updates its file system namespace with the latest information regarding blocks and where 
they exist now.  
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Node failure and replication
• Assume Data node 4 stops working 

• This means that no heart beats is 
sent anymore 

• The Name node then instructs 
another living Data Node including 
blocks B and C to replicate them 
on other Data Nodes. 

• Data transmission for B and C 
replication does not involve the 
Name Node.  
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 The name node thus is aware of all the active or functioning data nodes of the cluster and what 
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 Now imagine that data node 4 has stopped working. In this case, data node 4 stops  sending 
heartbeat signals to the name node. The name node concludes that data node 4 has died. 
After a certain period of time, the name nodes concludes that data node 4 is not in the cluster 
 anymore and that whatever data node 4 contained should be replicated or load-balanced to the 
available data nodes.  

 As you can see in  Figure   3.14   , the dead data node 4 contained blocks B and C, so name node 
instructs other data nodes, in the cluster that contain blocks B and C, to replicate it in manner; it 
is load-balanced and the replication factor is maintained for that specific block. The name node 
then updates its file system namespace with the latest information regarding blocks and where 
they exist now.  
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Writing a file to HDFS
• This can happen, for instance, by command-line or by 

means of a client program requesting the writing operation.  

• First step:

 21
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stopped  working, or a replica on a data node might have been corrupted. Alternatively, a storage 
device might have failed on the data node, the network connecting to the data node might have 
gone bad, or the replication factor of a file might have increased.  

 When you decrease the replication factor for a file already stored in HDFS, the name node deter-
mines, on the next heartbeat signal to it, the excess replica of the blocks of that file to be removed. 
It transfers this information back to the appropriate data nodes, to remove corresponding blocks and 
free up occupied storage space.    

  Writing to HDFS  
 As discussed earlier, when a client or application wants to write a file to HDFS, it reaches out to 
the name node with details of the file. The name node responds with details based on the actual 
size of the file, block, and replication configuration. These details from the name node contain 
the number of blocks of the file, the replication factor, and data nodes where each block will be 
stored (see  Figure   3.5   ).  

 
 FIGURE 3.5 
 The client talks to the name node for metadata to specify where to place the data blocks.         

 Based on information received from the name node, the client or application splits the files into 
multiple blocks and starts sending them to the first data node. Normally, the first replica is written 
to the data node creating the file, to improve the write performance because of the write affinity.  
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Writing a file to HDFS
• Second step, the first block is sent to Data Nodes:

 22
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  TIP 

 The client or application directly transfers the data to the first data node; the name node is not 
involved in the actual data transfer (data blocks don’t pass through the name node). Along with the 
block of data, the HDFS client, application, or API sends information related to the other data nodes 
where each block needs to be stored, based on the replication factor.   

 As you see in  Figure   3.6   , Block A is transferred to data node 1 along with details of the two 
other data nodes where this block needs to be stored. When it receives Block A from the client 
 (assuming a replication factor of 3), data node 1 copies the same block to the second data node 
(in this case, data node 2 of the same rack). This involves a block transfer via the rack switch 
because both of these data nodes are in the same rack. When it receives Block A from data node 
1, data node 2 copies the  same block to the third data node (in this case, data node 3 of the 
another rack). This involves a block transfer via an out-of-rack switch along with a rack switch 
because both of these data nodes are in separate racks.  

 
 FIGURE 3.6 
 The client sends data blocks to identified data nodes.         
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Writing a file to HDFS
• Third step, Data Nodes notify the Name Node about the 

stored  block replicas

 23
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  NOTE 

 Data Flow Pipeline  
 For better performance, data nodes maintain a pipeline for data transfer. Data node 1 does not 
need to wait for a complete block to arrive before it can start transferring to data node 2 in the flow. 
In fact, the data transfer from the client to data node 1 for a given block happens in smaller chunks 
of 4KB. When data node 1 receives the first 4KB chunk from the client, it stores this chunk in its 
local repository and immediately starts transferring it to data node 2 in the flow. Likewise, when 
data node 2 receives first 4KB chunk  from data node 1, it stores this chunk in its local repository 
and immediately starts transferring it to data node 3. This way, all the data nodes in the flow except 
the last one receive data from the previous one and transfer it to the next data node in the flow, to 
improve on the write performance by avoiding a wait time at each stage.   

 When all the instructed data nodes receive a block, each one sends a write confirmation to the 
name node (see  Figure   3.7   ).  

 
 FIGURE 3.7 
 Data nodes update the name node about receipt of the data blocks.         

 Finally, the first data node in the flow sends the confirmation of the Block A write to the client 
(after all the data nodes send confirmation to the name node) (see  Figure   3.8)   .  
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Writing a file to HDFS
• Fourth step, the first Data Node storing the block sends 

conformation to the client. 

 24
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 FIGURE 3.8 
 The first data node sends an acknowledgment back to the client.         

  NOTE 

 For simplicity, we demonstrated how one block from the client is written to different data nodes. 
But the whole process is actually repeated for each block of the file, and data transfer happens 
in parallel for faster write of blocks.   

 For example,  Figure   3.9    shows how data block write state should look after transferring Blocks A, 
B, and C, based on file system namespace metadata from the name node to the different data 
nodes of the cluster. This continues for all other blocks of the file.  
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Reading a file from HDFS
• First step.  
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  NOTE 

 Communication Protocols  
 All communication from clients to the name node, clients to data nodes, data nodes to the name 
node, and name node to the data nodes happens over Transmission Control Protocol/Internet 
Protocol (TCP/IP). The data nodes communicate with the name node using the data node protocol 
with its own TCP port number (configurable). The client communicates with the name node using 
the client protocol with its own TCP port number (configurable). By design, the name node does not 
initiate a remote procedure call (RPC); it only responds to the RPC requests coming from either data 
nodes or clients.    

  Reading from HDFS  
 To read a file from the HDFS, the client or application reaches out to the name node with the 
name of the file and its location. The name node responds with the number of blocks of the file, 
data nodes where each block has been stored (see  Figure   3.10   ).  

 
 FIGURE 3.10 
 The client talks to the name node to get metadata about the file it wants to read.         

 Now the client or application reaches out to the data nodes directly (without involving the name 
node for actual data transfer—data blocks don’t pass through the name node) to read the blocks 
of the files in parallel, based on information received from the name node. When the  client 
or application receives all the blocks of the file, it combines these blocks into the form of the 
 original file (see  Figure   3.11   ).  
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Reading a file from HDFS
• Second step.  

 26
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 FIGURE 3.11 
 The client starts reading data blocks of the file from the identified data nodes.         

 To improve the read performance, HDFS tries to reduce bandwidth consumption by satisfying 
a read request from a replica that is closest to the reader. It looks for a block in the same node, 
then another node in the same rack, and then finally another data node in another rack. If 
the HDFS cluster spans multiple data centers, a replica that resides in the local data center (the 
 closest one) is preferred over any remote replica from remote data center.  

  NOTE 

 Checksum for Data Blocks  
 When writing blocks of a file, the HDFS client computes the checksum of each block of the file and 
stores these checksums in a separate, hidden file in the same HDFS file system namespace. Later, 
while reading the blocks, the client references these checksums to verify that these blocks have not 
been corrupted. (Corruption can happen because of faults in a storage device, network transmission 
faults, or bugs in the program.) When the client realizes that a block is corrupt, it reaches out to 
another data node that has the replica of the corrupt block, to get another copy of  the block.    

  Handling Failures  
 On cluster startup, the name node enters into a special state called safe mode. During this 
time, the name node receives a heartbeat signal (implying that the data node is active and 
 functioning properly) and a block-report from each data node (containing a list of all blocks 
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Accessing and Managing 
HDFS

• HDFS command-line interface (CLI), or FS Shell 

• Leverage the Java API available in the classes of 
the org.apache.hadoop.fs  

• By means of high level languages (e.g., Pig Latin, 
Hive, Scala in Spark)
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http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

http://hadoop.apache.org/docs/current/api/org/apache/ hadoop/fs/package-frame.html



FS Shell, examples
• Creating a directory 

> hdfs dfs -mkdir /example/sampledata 

• Copying a directory to HDFS (from the local FS) 

> hdfs dfs -copyFromLocal \ 

/apps/dist/examples/data/gutenberg \ 

/example/sampledata 

• Listing content of a directory  

> hdfs dfs -ls /example/sampledata 

• Copying a file to FS 

> hdfs dfs -copyToLocal  \ 

/user/hadoop/filename \ 

/apps/dist/examples/data/gutenberg
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YARN



YARN
• YARN is a general purpose data operating 

systems 

• It accepts requests of task executions on the 
cluster and allocate resources for them 

• For instance YARN can accept requests for 
executing MR jobs or MPI programs on the 
same cluster  

• The set of resources for a task on a given node 
is called container and it includes given 
amounts of memory space and CPU power 
(cores) 

• YARN keeps track of allocated resources in 
order to schedule container allocation for new 
requests 

• Containers can be demanded all in advance 
like for MR jobs and Spark tasks, or at run time 
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This chapter walks through the features in YARN and provides a basis for understanding
later chapters in Part IV that cover Hadoop’s distributed processing frameworks.

Anatomy of a YARN Application Run
YARN provides its core services via two types of long-running daemon: a resource
manager (one per cluster) to manage the use of resources across the cluster, and node
managers running on all the nodes in the cluster to launch and monitor containers. A
container executes an application-specific process with a constrained set of resources
(memory, CPU, and so on). Depending on how YARN is configured (see “YARN” on
page 300), a container may be a Unix process or a Linux cgroup. Figure 4-2 illustrates how
YARN runs an application.

Figure 4-2. How YARN runs an application

To run an application on YARN, a client contacts the resource manager and asks it to
run an application master process (step 1 in Figure 4-2). The resource manager then
finds a node manager that can launch the application master in a container (steps 2a

80 | Chapter 4: YARN



YARN
• Step 1: a client contact the resource manager 

(running on the master node) 

• Step 2.a: the resource manager then finds a 
node manager (running on a slave) that can 
launch and manage the running operations of 
the application; this is the application manager.  

• Step 2.b: the node manager allocates the 
container indicated by the resource manager. 
The application runs within the container  

• Step 3: eventually, the application manager can 
request new containers to the resource manager 

• Step 4: a parallel container is then started after 
the acknowledge of the resource manager. 
Started container informs the application 
manager about their status upon request. 

• Containers can be demanded all in advance or 
at run time (step 4) 

• At the end of the process, the application 
manager informs the resource manager, which 
will kill the allocated containers.
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This chapter walks through the features in YARN and provides a basis for understanding
later chapters in Part IV that cover Hadoop’s distributed processing frameworks.

Anatomy of a YARN Application Run
YARN provides its core services via two types of long-running daemon: a resource
manager (one per cluster) to manage the use of resources across the cluster, and node
managers running on all the nodes in the cluster to launch and monitor containers. A
container executes an application-specific process with a constrained set of resources
(memory, CPU, and so on). Depending on how YARN is configured (see “YARN” on
page 300), a container may be a Unix process or a Linux cgroup. Figure 4-2 illustrates how
YARN runs an application.

Figure 4-2. How YARN runs an application

To run an application on YARN, a client contacts the resource manager and asks it to
run an application master process (step 1 in Figure 4-2). The resource manager then
finds a node manager that can launch the application master in a container (steps 2a

80 | Chapter 4: YARN



YARN as a data OS
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MapReduce 



Why MapReduce

▪After more than 10 years since its introduction, it 
still plays a crucial role
▪Powerful paradigm to express and implement 
parallel algorithms that scale
▪At the core of its evolutions : Pig Latin, Hive, Spark, 
Giraph, Flink.
▪Companies adopts and maintain a considerable 
amount of MapReduce code 
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MapReduce
▪ It is a paradigm to design algorithms for large 

scale data analytics.
▪Several programming languages can be used to 

implement MapReduce algorithms (Java, Python, 
C++, etc.)
▪ Its main runtime support is Hadoop
▪Starting from its 2.0 version, Hadoop is a general 

purpose run time support for large scale data 
processing, and supports in particular 
MapReduce
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Main principles
▪Data model: data collections are represented in terms 

of collections of key-value pairs (k, v)
▪Paradigm model: a MapReduce algorithm (or job) 

consists of two functions Map and Reduce specified by 
the developer
▪Actually, three phases at least during data processing
- Map phase
- Shuffle and sort phase, pre-defined
- Reduce phase

 36



MAP phase
- The Map second-order function is intended to be applied to 

each input pair (k,v) and for this pair returns a, possibly 
empty, list of pairs

 37

(k1,v1),…………..,(kj,vj),……….…….(kn,vn)

User 
defined  
function

Map
User 

defined  
function

Map
User 

defined  
function

Map

[(k’1,v’1), …. , (k’m,v’m)]…… ……



Shuffle and sort
- The shuffle and sort phase groups Map outputs on the k 

component producing paris of the form  ( k’,  [v1’, …. , vn’] )
- For instance:



Shuffle and sort
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(a, 8), (b, 5), (a, 3), (c, 8)     (f,1), (b, 3), (b, 5), (a, 7)         (c,1), (f,2)

S&S

(a, [3,7,8]), (c, [1,8])            (b, [5,5, 3]), (f, [1,2])

User 
defined  
function

Map
User 

defined  
function

Map
User 

defined  
function

Map



Reduce phase
- applied to each pair (k, [v1, …. , vn] ) produced by S&S for which 

returns a list of key-value pairs that takes part of the final result
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(k1,[…]),…………,(kh,[vh1,…,vhn]),……….…….(km,[…])

User 
defined  
function

Reduce
User 

defined  
function

Reduce
User 

defined  
function

Reduce

[(k’1,v’1), …. , (k’t,v’t)]…… ……



Example: WordCount

▪Problem: counting the number of occurrences for 
each word in a big collection of documents
▪ Input: a directory containing all the documents
▪Pair preparation done by Hadoop: starting from 

documents, pairs (k,v) where k is unspecified and 
v is a text line of a document are prepared and 
passed to the Map phase.
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Example: WordCount

▪Map: takes as input a couple (k,v) returns a pair 
(w,1) for each word w in v
▪Shuffle&Sort: groups all of pairs output by Map 

and produce pairs of the form (w, [1, …,1])
▪Reduce: takes as input a pair (w, [1, …,1]), sums 

all the 1’s for w obtaining s, and outputs (w,s)
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Pseudo code 
• Map( k, v ) 

for each w in v  
emit(w, 1) 

• Reduce(k, v) 
c=0 
for x in v  

c = c +1 
emit(k, c) 
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Example of data flow

 44
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MapReduce Job Execution Flow 131

   X    Reduce—      In this phase the  reduce  method is called for each unique key ( <key, 
( collection of values)> ) assigned to the Reducer, and the output is typically  written 
to HDFS with the  RecordWriter  class. The Reducers write their output only to their 
own output file, which resides in a common directory and typically is named similar to 
 part-  nnnnn , where  nnnnn  is the partition ID of the Reducer. As you saw in  Figure   4.5   , 
the  RecordWriter  class formats the output from the Reducers when writing to the output 
files. Note that the output from the reduce method is not sorted again.    

 As you can see in  Figure   4.9   , the map-outputs are first shuffled and sorted before making them 
available to the reduce method. Then the reduce method sums all the ones for each unique 
key or word and emits a single key-value pair that contains the word followed by the sum of its 
occurrences.  

 
 FIGURE 4.9 
 Reduce function flow for the word count example.         

  Listing   4.2    shows the implementation of Reducer for the word count example. The reduce 
method is called for each unique key (or a word, in this case) and then sums the individual 
count for each word. Finally, it emits a single key-value pair that contains the word followed by 
the sum of its occurrences.  

  LISTING 4.2   Reducer Implementation for Word Count Example  
  1:  public static class WordCountReducer
   2:     extends Reducer<Text,IntWritable,Text,IntWritable> {
   3:  private IntWritable result = new IntWritable();
   4:
   5:  public void reduce(Text key, Iterable<IntWritable> values,
   6:                     Context context
   7:                     ) throws IOException, InterruptedException {
   8:    int sum = 0;

From the Library of Dario Colazzo
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126 HOUR 4: The MapReduce Job Framework and Job Execution Pipeline

  Mapper Example  
 For our MapReduce job example, you can see in  Figure   4.7    that the text is stored in different 
blocks on the data node.  TextInputFormat  reads these blocks and splits the data into multiple 
InputSplits—this example has two InputSplits, so two instance of Mapper are instantiated. Each 
Mapper takes each line from the InputSplit as an input and breaks it into words. It emits a key-
value pair on each occurrence of the word, followed by a  1 .  

 
 FIGURE 4.7 
 Map function flow for the word count example.         

  Listing   4.1    contains the implementation of  Mapper  for the word count example, which processes 
one line at a time, as provided by the  TextInputFormat . It then splits the line into tokens 
(words) separated by whitespace, via the  StringTokenizer  class, and emits a key-value pair of 
 < <word>, 1>  as you saw in  Figure   4.7   .  

  LISTING 4.1   Mapper Implementation for the Word Count Example  
  1:  public static class WordCountMapper
   2:     extends Mapper<Object, Text, Text, IntWritable>{
   3:
   4:  private final static IntWritable one = new IntWritable(1);
   5:  private Text word = new Text();
   6:
   7:  public void map(Object key, Text value, Context context
   8:                  ) throws IOException, InterruptedException {
   9:    StringTokenizer itr = new StringTokenizer(value.toString());
  10:    while (itr.hasMoreTokens()) {
  11:        word.set(itr.nextToken());
  12:      context.write(word, one);
  13:      }
  14:    }
  15:  }   
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Scalability issues

▪ Ideal scaling characteristics
- Twice the data, twice the running time
- Twice the resources, half the time

▪Difficult to achieve in practice
- Synchronisation requires time
- Communication kills performance (networks is slow!)

▪Thus…minimise inter-node communication
- Local aggregation can help: reduce size of Map phase 

output
- Use of combiners can help in this direction

 45





Combiner
▪Goal: pre-aggregate Map output pairs just after the Map 

task (on the same machine) in order to decrease the  
number of pairs sent to shuffle&sort (trough the network)
▪ Its input has the shape of that of Reduce and its output 

has to be compatible with that of Map (*)
▪Like Reduce, it performs aggregation
▪Attention: it is up to Hadoop to decide whether a Mapper 

node runs a Combiner
▪ So some of the Map nodes run the combiner, some do 
not; this is why we need (*)
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Local aggregation: Combine 
• Map( k, v ) 

for each w in v  
emit(w, 1) 

• Combine(k,v)  
c=0 
for x in v  

c = c +1 
emit(k, c) 

• Reduce(k, v) 
c=0 
for x in v  

c = c +x 
emit(k, c) 
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Note that, as usual, Combine 
is isomorphic to Reduce. 
This is because the sum 
operat ion per formed by 
WordCount is associative. 



Exercise

▪Given a collection of (url,time) pairs where url’s 
may repeat, design a MapReduce job to 
compute the average time for each url 
▪Define a combiner. Is the Reduce a combiner 

too?  



Hadoop streaming
• In a nutshell, the task JVM runs all the auxiliary 

operations (split and record reading) output 
writing, etc. 

• The Map/Reduce algorithms are executed on the 
node-manager and can read records (pairs) on 
the Linux/Unix standard input stream (stdin) 
and write records (pairs) on the standard output 
stream (stdout). 

• For instance, the Map task running on the JVM 
reads records and put them on the stdin stream 
so that the Map program can read and process 
them.  

• The Map program emits pairs by performing 
simple print operations, that put pairs on the 
stdout stream, that are in turn read by the Map 
task and sent to the Shuffle&Sort phase. 

• So streaming implies an overhead, that is 
negligible for complex (time consuming) tasks 

 51Figure 7-2. The relationship of the Streaming executable to the node manager and the
task container

Progress and Status Updates
MapReduce jobs are long-running batch jobs, taking anything from tens of seconds to
hours to run. Because this can be a significant length of time, it’s important for the user
to get feedback on how the job is progressing. A job and each of its tasks have a status,
which includes such things as the state of the job or task (e.g., running, successfully
completed, failed), the progress of maps and reduces, the values of the job’s counters,
and a status message or description (which may be set by user code). These statuses
change over the course of the job, so how do they get communicated back to the client?

When a task is running, it keeps track of its progress (i.e., the proportion of the task
completed). For map tasks, this is the proportion of the input that has been processed.
For reduce tasks, it’s a little more complex, but the system can still estimate the pro‐
portion of the reduce input processed. It does this by dividing the total progress into

190 | Chapter 7: How MapReduce Works



Word count in Python 
• The mapper

 52



The reducer
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• Important: if Python is used for 
MapReduce on Hadoop then  

• pairs (k, [v1,..,vn]) are unfolded to a 
list of pairs (k, v1),…,(k,vn) 

• In practice each pair (k, vi) is a text  
line in stdin, where k and vi are 
separated by the tab character \t 

• The Reduce algorithm must identify 
the groups of lines sharing the same k  

• Fortunately lines are ordered on k by 
shuffle-and-sort.  

• Notice that you do not have this 
unfolding/folding if you use Java for 
MapReduce







Scalability issues
• Ideal scaling characteristics 

• Twice the data, twice the running time 

• Twice the resources, half the time 

• Difficult to achieve in practice 

• Synchronisation requires time 

• Communication kills performance (network is slow!) 

• Thus…minimise inter-node communication 

• Local aggregation can help: reduce size of Map phase output 

• Use of combiners can help in this direction
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Combiner

• It is an additional function you are allowed to define and adopt in MapReduce 

• Its input has the shape of that of Reduce and its output has to be compatible with 
that of Map (*) 

• Important: a local shuffle-and-sort is performed locally to prepare couples (k, [v1, ] 

• Like Reduce it performs aggregation 

• Differently from Reduce it is run locally, on slaves executing Map 

• Goal: pre-aggregate Map output pairs in order to lower number of pairs sent 
(trough the network) to shuffle-and-sort 

• Attention: it is up to Hadoop to decide whether a Mapper node runs a Combiner 

• so some of the Map nodes run the combiner, some do not; this is why we need 
(*) above 

• we will see in which cases  the Combiner is triggered. 
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Pseudo code with Combine 
• Map( k, v ) 

for each w in v  
emit(w, 1) 

• Combine(k,v)  
c=0 
for x in v  

c = c +1 
emit(k, c) 

• Reduce(k, v) 
c=0 
for x in v  

c = c +x 
emit(k, c) 
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N o t e t h a t C o m b i n e i s 
isomorphic to Reduce. 
This is because the sum 
o p e r a t i o n p e r f o r m e d b y 
WordCount is associative. 

We will see cases next where 
things are more complex. 



Spark



Motivation

▪Both iterative and interactive queries need one 
thing that MapReduce lacks

▪ In MapReduce, the only way to share data 
across processing step is stable storage (disk)
▪Replication also makes the system slow, but it is 

necessary for fault tolerance.

Efficient primitives for data sharing.



Solution
Example
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Challenge 
▪How to design a distributed memory abstraction 

that is both fault tolerant and efficient?
▪Solution: Resilient Distributed Datasets (RDD)
- A distributed main-memory abstraction.
- Immutable collections of objects spread across a 

cluster.
- Lineage among RDDs to enable their re-evaluation 

in case of cluster node failures



Resilient Distributed Dataset  

▪An RDD is a data collection which is divided into a 
number of partitions, which can be independently 
processed.

Worker 
tasks 

results 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Driver 

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.
Second, RDDs degrade gracefully when there is not
enough memory to store them, as long as they are only
being used in scan-based operations. Partitions that do
not fit in RAM can be stored on disk and will provide
similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited
for batch applications that apply the same operation to
all elements of a dataset. In these cases, RDDs can ef-
ficiently remember each transformation as one step in a
lineage graph and can recover lost partitions without hav-
ing to log large amounts of data. RDDs would be less
suitable for applications that make asynchronous fine-
grained updates to shared state, such as a storage sys-
tem for a web application or an incremental web crawler.
For these applications, it is more efficient to use systems
that perform traditional update logging and data check-
pointing, such as databases, RAMCloud [25], Percolator
[26] and Piccolo [27]. Our goal is to provide an efficient
programming model for batch analytics and leave these
asynchronous applications to specialized systems.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API similar to DryadLINQ [31] in Scala [2],
a statically typed functional programming language for
the Java VM. We chose Scala due to its combination of
conciseness (which is convenient for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that
connects to a cluster of workers, as shown in Figure 2.
The driver defines one or more RDDs and invokes ac-
tions on them. Spark code on the driver also tracks the
RDDs’ lineage. The workers are long-lived processes
that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-
tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).
Scala represents each closure as a Java object, and
these objects can be serialized and loaded on another
node to pass the closure across the network. Scala also
saves any variables bound in the closure as fields in
the Java object. For example, one can write code like
var x = 5; rdd.map(_ + x) to add 5 to each element
of an RDD.5

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection [33]. We also
needed more work to make Spark usable from the Scala
interpreter, as we shall discuss in Section 5.2. Nonethe-
less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one
mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to persist. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another dataset according to it. Op-
erations such as groupByKey, reduceByKey and sort au-
tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section
2.2.1 with two iterative applications: logistic regression
and PageRank. The latter also showcases how control of
RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to maximize a function. They can
thus run much faster by keeping their data in memory.

As an example, the following program implements lo-
gistic regression [14], a common classification algorithm

5We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.

Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic
pieces of information.

I Partitions of an RDD can be stored on di↵erent nodes of a cluster.

I Built through coarse grained transformations, e.g., map, filter,
join.

I Fault tolerance via automatic rebuild (no replication).

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 26 / 71

Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>

Amir H. Payberah (SICS) Spark and Spark SQL June 29, 2016 25 / 71
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Programming model

▪Based on parallelizable operators.
▪Parallelizable operators are higher-order functions 

that  execute user-defined functions in parallel, on 
each partition of an RDD.
▪There are two types of RDD operators : 

transformations and actions.



▪Transformations : lazy operators that create new RDDs.
▪Actions : lunch a computation and return a value to the 

program driver or write data to the external storage

▪ Implemented in  Scala:
- a strongly and statically typed functional-OO language
- compiled and run over the JVM
- designed at EPFL (Switzerland).

▪  Java and Python can be used too for Spark 
programming.

Programming model

Worker 
tasks 

results 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Driver 

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.
Second, RDDs degrade gracefully when there is not
enough memory to store them, as long as they are only
being used in scan-based operations. Partitions that do
not fit in RAM can be stored on disk and will provide
similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited
for batch applications that apply the same operation to
all elements of a dataset. In these cases, RDDs can ef-
ficiently remember each transformation as one step in a
lineage graph and can recover lost partitions without hav-
ing to log large amounts of data. RDDs would be less
suitable for applications that make asynchronous fine-
grained updates to shared state, such as a storage sys-
tem for a web application or an incremental web crawler.
For these applications, it is more efficient to use systems
that perform traditional update logging and data check-
pointing, such as databases, RAMCloud [25], Percolator
[26] and Piccolo [27]. Our goal is to provide an efficient
programming model for batch analytics and leave these
asynchronous applications to specialized systems.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API similar to DryadLINQ [31] in Scala [2],
a statically typed functional programming language for
the Java VM. We chose Scala due to its combination of
conciseness (which is convenient for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that
connects to a cluster of workers, as shown in Figure 2.
The driver defines one or more RDDs and invokes ac-
tions on them. Spark code on the driver also tracks the
RDDs’ lineage. The workers are long-lived processes
that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-
tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).
Scala represents each closure as a Java object, and
these objects can be serialized and loaded on another
node to pass the closure across the network. Scala also
saves any variables bound in the closure as fields in
the Java object. For example, one can write code like
var x = 5; rdd.map(_ + x) to add 5 to each element
of an RDD.5

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection [33]. We also
needed more work to make Spark usable from the Scala
interpreter, as we shall discuss in Section 5.2. Nonethe-
less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one
mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to persist. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another dataset according to it. Op-
erations such as groupByKey, reduceByKey and sort au-
tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section
2.2.1 with two iterative applications: logistic regression
and PageRank. The latter also showcases how control of
RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to maximize a function. They can
thus run much faster by keeping their data in memory.

As an example, the following program implements lo-
gistic regression [14], a common classification algorithm

5We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.



Example 
▪Suppose that a web service is experiencing errors and an 

operator wants to search terabytes of logs in the Hadoop 
filesystem (HDFS) to find the cause.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem. 
Reads Coarse- or fine-grained Fine-grained 
Writes Coarse-grained Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
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Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.
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2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.
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2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.
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2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.
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2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.

lines 

errors 

filter(_.startsWith(“ERROR”)) 

HDFS errors 

time fields 

filter(_.contains(“HDFS”))) 

map(_.split(‘\t’)(3)) 

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.
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2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem. 
Reads Coarse- or fine-grained Fine-grained 
Writes Coarse-grained Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
Fault recovery Fine-grained and low-

overhead using lineage 
Requires checkpoints 
and program rollback 

Straggler 
mitigation 

Possible using backup 
tasks 

Difficult 

Work 
placement 

Automatic based on 
data locality 

Up to app (runtimes 
aim for transparency) 

Behavior if not 
enough RAM 

Similar to existing data 
flow systems 

Poor performance 
(swapping?) 

Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.

lines 

errors 

filter(_.startsWith(“ERROR”)) 

HDFS errors 

time fields 

filter(_.contains(“HDFS”))) 

map(_.split(‘\t’)(3)) 

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.
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Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:
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// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))
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After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem. 
Reads Coarse- or fine-grained Fine-grained 
Writes Coarse-grained Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
Fault recovery Fine-grained and low-

overhead using lineage 
Requires checkpoints 
and program rollback 

Straggler 
mitigation 

Possible using backup 
tasks 

Difficult 

Work 
placement 

Automatic based on 
data locality 

Up to app (runtimes 
aim for transparency) 

Behavior if not 
enough RAM 

Similar to existing data 
flow systems 

Poor performance 
(swapping?) 

Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.

the lineage graph enables RDD re-evaluation in 
case of failure



RDD transformations  
and actions

Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.



RDD transformations : Map

▪All pairs are independently processed RDD Transformations - Map

I All pairs are independently processed.

// passing each element through a function.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x) // {1, 4, 9}

// selecting those elements that func returns true.

val even = squares.filter(x => x % 2 == 0) // {4}

// mapping each element to zero or more others.

nums.flatMap(x => Range(0, x, 1)) // {0, 0, 1, 0, 1, 2}
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# passing each RDD element trough a function 
nums = sc.parallelize([1,2,3]) 
squares = nums.map(lambda x: x * x) 

# selecting elements making a boolenba function returning true 
even = squares.filter(lambda x : x % 2 ==0) 

# map + flattening  
m = nums.map(lambda x: range(x)) 
# [[0], [0, 1], [0, 1, 2]] 
fm = nums.flatMap(lambda x: range(x)) 
# [0, 0, 1, 0, 1, 2] 



RDD transformations : Reduce
▪Pairs with identical key are grouped 
▪Each group is independently processed 

RDD Transformations - Reduce

I Pairs with identical key are grouped.

I Groups are independently processed.

val pets = sc.parallelize(Seq(("cat", 1), ("dog", 1), ("cat", 2)))

pets.reduceByKey((x, y) => x + y)

// {(cat, 3), (dog, 1)}

pets.groupByKey()

// {(cat, (1, 2)), (dog, (1))}
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pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2),  ("dog", 3) ]) 

pets.reduceByKey(lambda x, y : x +y) 
# [(‘dog', 4), ('cat', 3)] 

pets.groupByKey() 
pets.groupByKey().map(lambda x : (x[0], list(x[1]))) 
# [('dog', [1,3]), ('cat', [1, 2])]



RDD transformations : Join
▪Equi-join on the key

RDD Transformations - Join

I Performs an equi-join on the key.

I Join candidates are independently pro-
cessed.

val visits = sc.parallelize(Seq(("index.html", "1.2.3.4"),

("about.html", "3.4.5.6"),

("index.html", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("index.html", "Home"),

("about.html", "About")))

visits.join(pageNames)

// ("index.html", ("1.2.3.4", "Home"))

// ("index.html", ("1.3.3.1", "Home"))

// ("about.html", ("3.4.5.6", "About"))

Amir H. Payberah (SICS) Spark April 24, 2014 18 / 49

visits = sc.parallelize( [("h", “1.2.3.4"), ("a", "3.4.5.6"), ("h", “1.3.3.1")] ) 

pageNames = sc.parallelize( [("h", “Home"), ("a", “About")] ) 

visits.join(pageNames) 

# [('a', ('3.4.5.6', 'About')), ('h', ('1.2.3.4', Home')), 
    ('h', ('1.3.3.1', 'Home'))] 



RDD transformations : CoGroup
▪Groups each input on key 
▪Groups with identical keys are processed 

together  
RDD Transformations - CoGroup

I Groups each input on key.

I Groups with identical keys are processed
together.

val visits = sc.parallelize(Seq(("index.html", "1.2.3.4"),

("about.html", "3.4.5.6"),

("index.html", "1.3.3.1")))

val pageNames = sc.parallelize(Seq(("index.html", "Home"),

("about.html", "About")))

visits.cogroup(pageNames)

// ("index.html", (("1.2.3.4", "1.3.3.1"), ("Home")))

// ("about.html", (("3.4.5.6"), ("About")))
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visits = sc.parallelize([("h", “1.2.3.4"), ("a", "3.4.5.6"), ("h", "1.3.3.1")] ) 

pageNames = sc.parallelize([("h", "Home"), ("a", "About"), ("o", "Other")]) 

visits.cogroup(pageNames) 

visits.cogroup(pageNames).map(lambda x :(x[0], ( list(x[1][0]), list(x[1][1])))) 

# [('a', (['3.4.5.6'], ['About'])), ('h', (['1.2.3.4', '1.3.3.1'], ['Home'])), 
('o', ([], ['Other']))] 



Some experiments on 
PageRank
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Figure 9: Iteration times for logistic regression using 256 MB
data on a single machine for different sources of input.

3. Deserialization cost to convert binary records to us-
able in-memory Java objects.

We investigated each of these factors in turn. To mea-
sure (1), we ran no-op Hadoop jobs, and saw that these at
incurred least 25s of overhead to complete the minimal
requirements of job setup, starting tasks, and cleaning up.
Regarding (2), we found that HDFS performed multiple
memory copies and a checksum to serve each block.

Finally, to measure (3), we ran microbenchmarks on
a single machine to run the logistic regression computa-
tion on 256 MB inputs in various formats. In particular,
we compared the time to process text and binary inputs
from both HDFS (where overheads in the HDFS stack
will manifest) and an in-memory local file (where the
kernel can very efficiently pass data to the program).

We show the results of these tests in Figure 9. The dif-
ferences between in-memory HDFS and local file show
that reading through HDFS introduced a 2-second over-
head, even when data was in memory on the local ma-
chine. The differences between the text and binary in-
put indicate the parsing overhead was 7 seconds. Finally,
even when reading from an in-memory file, converting
the pre-parsed binary data into Java objects took 3 sec-
onds, which is still almost as expensive as the logistic re-
gression itself. By storing RDD elements directly as Java
objects in memory, Spark avoids all these overheads.

6.2 PageRank
We compared the performance of Spark with Hadoop
for PageRank using a 54 GB Wikipedia dump. We ran
10 iterations of the PageRank algorithm to process a
link graph of approximately 4 million articles. Figure 10
demonstrates that in-memory storage alone provided
Spark with a 2.4⇥ speedup over Hadoop on 30 nodes.
In addition, controlling the partitioning of the RDDs to
make it consistent across iterations, as discussed in Sec-
tion 3.2.2, improved the speedup to 7.4⇥. The results
also scaled nearly linearly to 60 nodes.

We also evaluated a version of PageRank written us-
ing our implementation of Pregel over Spark, which we
describe in Section 7.1. The iteration times were similar
to the ones in Figure 10, but longer by about 4 seconds
because Pregel runs an extra operation on each iteration
to let the vertices “vote” whether to finish the job.
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Figure 10: Performance of PageRank on Hadoop and Spark.
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Figure 11: Iteration times for k-means in presence of a failure.
One machine was killed at the start of the 6th iteration, resulting
in partial reconstruction of an RDD using lineage.

6.3 Fault Recovery

We evaluated the cost of reconstructing RDD partitions
using lineage after a node failure in the k-means appli-
cation. Figure 11 compares the running times for 10 it-
erations of k-means on a 75-node cluster in normal op-
erating scenario, with one where a node fails at the start
of the 6th iteration. Without any failure, each iteration
consisted of 400 tasks working on 100 GB of data.

Until the end of the 5th iteration, the iteration times
were about 58 seconds. In the 6th iteration, one of the
machines was killed, resulting in the loss of the tasks
running on that machine and the RDD partitions stored
there. Spark re-ran these tasks in parallel on other ma-
chines, where they re-read corresponding input data and
reconstructed RDDs via lineage, which increased the it-
eration time to 80s. Once the lost RDD partitions were
reconstructed, the iteration time went back down to 58s.

Note that with a checkpoint-based fault recovery
mechanism, recovery would likely require rerunning at
least several iterations, depending on the frequency of
checkpoints. Furthermore, the system would need to
replicate the application’s 100 GB working set (the text
input data converted into binary) across the network, and
would either consume twice the memory of Spark to
replicate it in RAM, or would have to wait to write 100
GB to disk. In contrast, the lineage graphs for the RDDs
in our examples were all less than 10 KB in size.

6.4 Behavior with Insufficient Memory

So far, we ensured that every machine in the cluster
had enough memory to store all the RDDs across itera-

Borrowed from Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. 
 Matei Zaharia et al, NSDI 2012. 


