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Course outline

* |ntroduction to Big Data

* The ubiquitous frameworks: Hadoop, MapReduce
and Spark

e Hands-on/lab-session



What is Big Data”

* Hint: you are part of it.

* The 3 V's characterising Big data




The 3V's, more In detall

Big Data:
Expanding on 3 fronts
at an increasing rate.

Data
Velocity




Enaplers

* |ncreasing of storage capacity
* |ncreasing of processing power

* Availability of massive amounts of data



Enaplers

* |ncreasing of storage capacity
* |Increasing of processing power
* Availability of massive amounts of data

Are we missing anything?



Big Data Landscape 2016 (Version 3.0)
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Trends for data ana

Data and analytics fuel 6 disruptive models that
change the nature of competition

Massive
data
integration

Hyperscale,
real-time
matching

The age of analytics: Competing in a data-driven world.

Data-driven
discovery and
innovation

Data

<

Enhanced
decision
making

Report McKinsey Global Institute December 2016 g

Radical
personalization

Orthogonal
data sets

VtiCS



Typical Hadoop stack:

Applications Run Natively IN Hadoop

Pig Hive HBase ‘A ccccc Io‘ Storm Solr Spark | Cascading Others.
Script SQL NoSQL NoSQL Stream Scarcn In-Memory Java ISV
£ngines
YARN: Data Operating System
HDFS

(Hadoop Distributed File Sysiem)



Ihree main steps In data
analytics

m  Data generation and collection: The source and platform where data are
initially captured.

m  Data aggregation: Processes and platforms for combining data from multiple sources.

m  Data analysis: The gleaning of insights from data that can be acted upon.

The age of analytics: Competing in a data-driven world.
Report McKinsey Global Institute April 2016

 Hadoop ecosystem plays a crucial role in each of them

* The first twos are about data preparation: at least 50% of the data scientist
work!

* As seen before, companies often struggle in recruiting and retain talents for
each of these 3 tasks

10



The Hadoop Distributed
Filesystem - HDFS

* Highly scalable, distributed, load-balanced, portable,
and fault-tolerant (with built-in redundancy at the
software level) storage component of Hadoop.

* |t provides a layer tor storing Big Data in a traditional,
hierarchical, Linux-like file organization of directories
and files.

* |t has been designed to run on commodity hardware.

11



Main assumptions behind its
design

Horizontal scalability

Fault tolerance

Capability to run on commodity hardware

Write once, read many times

Data locality

File system namespace, relying on traditional hierarchical file organization.

Streaming access and high throughput:

e reading the data in the fastest possible way (instead of focusing on the speed
of the data write).

e reading data from multiple nodes, in parallel.

12



lTypical cluster arcnhitecture

One or more racks.

Typically 30 to 40 node servers per A e

rack with a 1GB switch for the rack.
Rack 1 Q Rack 2 i@
< > J >

The cluster switch is normally 1GB or R Y AR SN
10GB. ¥y ¥
Architecture of single node server can D e % Diss Diss %
vary.
. . o Example of balanced single node

* More disk capacily and nelwork a’.’d neltwork architecture proposed by Cloudera.

throughput for operations like

indexing, grouping, data importing/ . 2-24 1-4TB hard disks in a JBOD (Just a

exporting, data transformation. Bunch Of Disks) configuration (no RAID)
 More CPU capacity for operations

. . e e 2 quad-/hex-/octo-core CPUSs, running at
like clustering/classification, NLP, least 2-2 5GHz

feature extraction.
e 064-512GB of RAM



HDFS

Applications Run Natively IN Hadoop

Pig Hive | HBase vAccumqu' Storm Solr Spark | Cascading Others.

Script SQL NoSQL NoSQL Stream Scaren In-Memory Java ISV
£ngines
YARN: Data Operating System
HDFS

(Hadoop Distributed File Systiem)

References : Hadoop: The Definitive Guide - Tom White.
Apache Hadoop Yarn - Arun C.Murty, Vinod Kumar Vavilapalli, et al.

Big Data Analytics with Microsoft HDIlinsight - Manpreet Singh, Ashrad Ali.



Name nodes and Data nodes

e To store a file, HDFS client asks
meta information to the Name
node

1o Tl

PN T

HDF5 Client

e fsimage and

B
1 upload

e The client then interacts only with

MNameMode

Data Nodes
T o |t Spll’[S the file Into one or more
= chunks or blocks (64 MB by
e default, configurable)
« Name node = a server node  And send them to a set of Data
running the Name node daemon Nodes slaves previously
(service in Windows) indicated by the Name node

« Data Node = a server node running * Each block is replicated n times
the Data node daemon (n=3 by default, configurable)



File split in HDFS

Giant File = 1300 MB

11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
11100101010011100101010011100110010101001110010101001110010101001l10010101001110010101001;

-

!

Block Block Block Block Block
1 2 3 20 21
64MB 64MB 64MB 64MB 20MB

 In Hadoop you have plenty of configuration files

e For instance, block size is set in the hdfs-site.xml file

Name Value Description
dfs. 134217728 The default block size for new files, in bytes. You can use the
blocksize following suffix (case insensitive): k (kilo), m (mega), g (giga),

t (tera), p (peta), e (exa) to specify the size (such as 128k, 512m,
1¢g, and so on). Or, provide the complete size in bytes, such as
134217728 for 128MB.

16



Block placement and replication

* By default each block is stored 3 times in three different Data
nodes, for fault tolerance

* When a file is created, an application can specity the number of
replicas of each block of the file that HDFS must maintain. The
upper bound dfs.replication.max must be respected.

e Settings in  hdfs-site.xml

Name Value Description

dfs.replication 3 Default block replication. The actual number of replications
can be specified when the file is created. The default is
used if replication is not specified in create time.

dfs.replication.max 512 Maximum block replication.

dfs.namenode. 1 Minimal block replication.
replication.min

17



Block placement and replication

 For robustness, the ideal approach would be to store block replicas in different
racks.

* For efficiency, it is better to store all replicas in the same rack.

* Balanced Hadoop approach: store one block on the client Data node where the file
originates (or a not too busy node chosen by the Name node) and the two other
blocks in a different rack (if any).

* This requires to configure the cluster for RackAwareness

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/RackAwareness.html

L
Il

rack

data center


https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/RackAwareness.html

Heartbeats

All data nodes periodically (each 3
seconds) send heartbeat signals to the
name node.

They contain crucial information about
stored blocks, percentage of used

storage, current communication load, etc.

Hearth beat contents are crucial for the
Name Node to build and maintain
metadata information

The NameNode does not directly call the
Data Nodes. It uses replies to heartbeats
to ask replication to other nodes, remove
local block replicas, etc.

19

NameNode

Metadata
Giant file, r:3, {A,B,C,...}
Block A={1,2,3}
Block B ={4,3,1}
Block C=1{1,2,4}

(heartbeat signal, block-report, load balancing, replication, etc.)
DataNodel DataNode2 DataNode3 DataNode4
Al Bl C Al C AllB B||C

Rack 1 Rack 2



Node failure and replication

* Assume Data node 4 stops working

e This means that no heart beats Is
sent anymore

 [The Name node then instructs
another living Data Node including
blocks B and C to replicate them
on other Data Nodes.

Data transmission for B and C
replication does not involve the
Name Node.

20

NameNode

Metadata
Giant file, r:3, {A,B,C,...}
Block A={1,2,3}
Block B ={4,3,1}
Block C=1{1,2,4}

il i "

(heartbeat signal, block-report, load balancing, replication, etc.)

L

DataNodel DataNode2 DataNode3 DateNodes

AllB|lC AllC AllB Bl &

Rack 1 Rack 2



Writing a file to HDFS

* This can happen, for instance, by command-line or by
means of a client program requesting the writing operation.

* First step:

Giant File % Sl NameNode
110010101001 | \
010100101010 AllB|[C . e
011001010100 — — — Meta data request for data write : 3
101010010101 I > DI|EI||lF PN 1 o O a1 S Ay S, > Giant file, r:3, {A,8,C,...}
001100101010 — e e ¢ o — — — — — — — — — — — Block A = {1'2'3}
010101001010 G|l HI Meta data response for data write - Block B = {4,3,1}
100110010101 — : Namenode tells client where to store Block C={1,2,4}
001010100101 each block of the file basedon U L ..
replication factor, and load on

datanodes

@
HDFS Client i}

SRR

TN ) | T3z M

DataNodel DataNode2 DataNode3 DataNode4

Rack 1 Rack 2
21




Writing a file to HDFS

» Second step, the first block is sent to Data Nodes:

| Giant File NameNode
110010101001 g |
010100101010 |A]|B||C| Metadata
011001010100 : :
4 | Giant file, r:3, {A,B,C,...)
101010010101 |/ > D || | Block A = {1,2.3}

001100101010 Block B ={4,3,1}

010101001010 G ‘ \ H Based on meta data received from Block C = {1,2,4}
100110010101 NameNode, HDFS client directly writes 7
001010100101 data or blocks to assigned Datanodes @ s

: @
~ HDFS Client i)

DataNodel DatdNode2 DataNode3 DataNode4

Rack 1 | Rack 2

22



Writing a file to HDFS

* Third step, Data Nodes notity the Name Node about the
stored block replicas

Giant File NameNode
110010101001 g | g § o
010100101010 AjlBJ|C Metadata
011001010100 N iant file. r:3. (A B.C...
101010010101 (! D || E || F F Glant file, 733, (A.B8,6,.
: - ’ Block A={1,2,3}
001100101010 — o | Block B = {4,3.1)
| - Rer "
‘iégﬁég?égé? G| H]J{.- Block Raceived - All 22 Block C = {1,2,4}
001010100101 datanodes send write , ~ ,’,’ _________
confirmation to Pig 7
< Namenode 8 /’ /
HDFS Client [Jif) &
// ,, /
/ / /
37 3 s R
LB R DR
§ / !
/ / !
// ,/ !
A /
| / m
/ /
/7 /
/, /, /
7 / 4
| DataNodel DataNode2 DataNode3 DataNode4
L |A] A A
| Rack 1 Rack 2

23



Writing a file to HDFS

 Fourth step, the first Data Node storing the block sends
conformation to the client.

Giant File

110010101001
010100101010
011001010100
101010010101
001100101010
010101001010
100110010101
001010100101

=

ollo]l»

» (<)
HDFS Client m
N

Datanode sends

confirmation of block

write to the client!

T/ m| w

NameNode

Metadata
Giant file, r:3, {A,B,C,...}
Block A=1{1,2,3}

MmO

Block B = {4,3,1}
Block C={1,2,4}

& 5 R G

*. DataNodel | DataNode2 DataNode3 || DataNode4
1A A A
Rack 1 Rack 2

24



Reading a file from HDFS

* First step.

%“ NameNode
L)

Metadata
S ot 5 ._M e ti-d.ata_roicﬁes.tf_or.da_t.a .r?id ....... > Giant file, r:3, {A,B,C,...}
@ B o s 5 im0 o a0 e o, O o i 8 Block A ={1,2,3}
HDFS Client m Meta data response for data read - Block B = {4,3,1)
AL Namenode tells client where the blocks Block C={1,2,4)
of the requested files are storedand " L ...
what datanodes can be contacted to
read the data
DataNodel DataNode2 DataNode3 DataNode4
AllBIHC| (lIA]lC] | All B B||C|
Rack 1 Rack 2

25



Reading a file from HDFS

e Second step.

Giant File NErsEnas
110010101001 |
010100101010 All B, § | Metadate
SOOI | (D) () e e 5, (8.,
001100101010 i Block A=1{1,2,3}
010101001010 G| H Block B ={4,3,1}
100110010101 ' Block C={1,2,4}
001010100101 3
@
HDFS Client m

DataNodel DataNode2 DataNode3 DataNode4
AllB|lC All C AllB 1Bl C
Rack 1 Rack 2

20



Accessing and Managing
HDFS

« HDFS command-line interface (CLI), or FS Shell

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

* | everage the Java API| available in the classes of
the org.apache.hadoop. fs

http://hadoop.apache.org/docs/current/api/org/apache/ hadoop/ts/package-frame.html
By means of high level languages (e.g., Pig Latin,
Hive, Scala in Spark)

27



FS Shell, examples

Creating a directory

> hdfs dfs -mkdir /example/sampledata

Copying a directory to HDFS (from the local FS)

> hdfs dfs -copyFromLocal \
/apps/dist/examples/data/gutenberg \
/example/sampledata

Listing content of a directory
> hdfs dfs -1ls /example/sampledata

Copying a file to FS

> hdfs dfs -copyToLocal \
/user/hadoop/filename \

/apps/dist/examples/data/gutenberg

28



YARN

Applications Run Natively IN Hadoop

Pig Hive HBase IAccumqu Storm Solr Spark | Cascading Othersl

Script SQL NoSQL NoSQL Stream Scaren In-Memory Java ISV
Engines

YARN: Data Operating System

HDFS
(Hadoop Distributed File System)



YARN

YARN is a general purpose data operating

systems I ! — i
: Aprg“gzttlon ' T :b ResourceManager :
It accepts requests of task executions on the ! ! VARN | !
i clientnode | application 1 resource manager node |
cluster and allocate resources for them b e . e S
2a: start containerl
For instance YARN can accept requests for : U 13- allocate resources (heartbeat)
. . | | :
executing MR jobs or MPI programs on the 1 | NodeManager §
| |
same cluster i szlaunchl i
| |
) ] i ] fmm e ————
The set of resources for a task on a given node ! i ! |
is called container and it includes given i Apppr'gig?s"“ : — M NodeManager
amounts of memory space and CPU power i | contaner |
(Cores) | nodemanagernode : b Iaunchl
TTTTTTTTTTTT " : Container
. |
YARN keeps track of allocated resources in : Application
order to schedule container allocation for new ! proces
|
req uests ! node manager node

Containers can be demanded all in advance
like for MR jobs and Spark tasks, or at run time

30



YARN

Step 1: a client contact the resource manager
(running on the master node)

Step 2.a: the resource manager then finds a
node manager (running on a slave) that can
launch and manage the running operations of
the application; this is the application manager.

Step 2.b: the node manager allocates the
container indicated by the resource manager.
The application runs within the container

Step 3: eventually, the application manager can
request new containers to the resource manager

Step 4: a parallel container is then started after
the acknowledge of the resource manager.
Started container informs the application
manager about their status upon request.

Containers can be demanded all in advance or
at run time (step 4)

At the end of the process, the application
manager informs the resource manager, which
will kill the allocated containers.

31

Application

client

client node

2a: start container

»| ResourceManager

1: submit 1
YARN :
application 1 resource manager node

L_l ————— x—_——.l

NodeManager

Container

Application

3: allocate resources (heartbeat)

| 4aq: start
container

process

|
|
|
|
|
|
2b: Iaunchl :
|
|
|
[
|
|
|
|
|
|

node manager node

Container

Application
process




YARN as a data OS

I
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ResouceManager  —e——— Map Reduce Client
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ApplicationManager
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MapReduce



Why MapReduce

= After more than 10 years since its introduction, it
still plays a crucial role

=Powerful paradigm to express and implement
parallel algorithms that scale

=At the core of its evolutions : Pig Latin, Hive, Spark,
Giraph, Flink.

=Companies adopts and maintain a considerable
amount of MapReduce code

34



MapReduce

= It is a paradigm to design algorithms for large
scale data analytics.

= Several programming languages can be used to
implement MapReduce algorithms (Java, Python,
C++, etc.)

= [ts main runtime support is Hadoop

= Starting from its 2.0 version, Hadoop is a general
purpose run time support for large scale data
processing, and supports in particular
MapReduce

35



Main principles

= Data model: data collections are represented in terms
of collections of key-value pairs (k, v)

= Paradigm model: a MapReduce algorithm (or job)
consists of two functions Map and Reduce specified by
the developer

= Actually, three phases at least during data processing
- Map phase
- Shuffle and sort phase, pre-defined
- Reduce phase

36



MAP phase

- The Map second-order function is intended to be applied to
each input pair (k,v) and for this pair returns a, possibly
empty, list of pairs

User User User
defined defined defined
function function function
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Shuffle and sort

- The shuffle agd sort phase groups Map outputs onlthe K
component prdducing paris of thé form ( k’, [v1’, ..., vn’])
- For instance:



Shuffle and sort
| |

Map Map Map
User User

l

User
defined

defined defined

function

function function

l l l

L e 19, 8, (B &) (e e k() ey, 3 (e, S By 1) © 1) i 2)

l l l

(a, [3,7,8]), (c, [1,8]) (b, [5,5,3]), (1, [1.2])
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Reduce phase

- applied to each pair (k, [v1, .... , Vn] ) produced by S&S for which
returns a list of key-value pairs that takes part of the final result

deﬂngd defined defined
function function function

...... [(K'1,V’1), ...., (K't,V)]
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Example: WordCount

= Problem: counting the number of occurrences for
each word in a big collection of documents

= |nput: a directory containing all the documents

= Pair preparation done by Hadoop: starting from
documents, pairs (k,v) where Kk is unspecified and
v is a text line of a document are prepared and
passed to the Map phase.
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Example: WordCount

= Map: takes as input a couple (k,v) returns a pair
(w,1) for each word w in v

= Shuffle&Sort: groups all of pairs output by Map
and produce pairs of the form (w, [1, ...,1])

= Reduce: takes as input a pair (w, [1, ...,1]), sums
all the 1’s for w obtaining s, and outputs (w,s)
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Pseudo code

e Map(k, v)

foreach win v
emit(w, 1)

 Reduce(k, v)

c=0

for x in v
C=C+1

emit(k, c)
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Example of data flow

Blocks of file in HDFS |
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Scalability issues

= |deal scaling characteristics
- Twice the data, twice the running time
- Twice the resources, half the time

= Difficult to achieve in practice
- Synchronisation requires time
- Communication kills performance (networks is slow!)

= Thus...minimise inter-node communication
- Local aggregation can help: reduce size of Map phase
output
- Use of combiners can help in this direction
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Combiner

= Goal: pre-aggregate Map output pairs just after the Map
task (on the same machine) in order to decrease the
number of pairs sent to shuffle&sort (trough the network)

= |ts input has the shape of that of Reduce and its output
has to be compatible with that of Map (*)

= Like Reduce, it performs aggregation

= Attention: it is up to Hadoop to decide whether a Mapper
node runs a Combiner

= SO some of the Map nodes run the combiner, some do
not; this is why we need (*)
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Local aggregation: Combine

« Map(k, v)
for each winv
emit(w, 1)
Note that, as usual, Combine
« Combine(k,v) IS iIsomorphic to Reduce.
c=0 Enis s = pecausew ihe--stim
for x in v operation performed by
c=c 41 WordCount is associative.
emit(k, ¢)

* Reduce(k, v)
c=0
for x in v
C=C+X
emit(k, c)
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Exercise

= Given a collection of (url,time) pairs where url’s
may repeat, design a MapReduce job to
compute the average time for each url

= Define a combiner. Is the Reduce a combiner
too0?



Hadoop streaming

In a nutshell, the task JVM runs all the auxiliary
operations (split and record reading) output
writing, etc.

The Map/Reduce algorithms are executed on the
node-manager and can read records (pairs) on
the Linux/Unix standard input stream (stdin)
and write records (pairs) on the standard output
stream (stdout).

For instance, the Map task running on the JVM
reads records and put them on the stdin stream
so that the Map program can read and process
them.

The Map program emits pairs by performing
simple print operations, that put pairs on the
stdout stream, that are in turn read by the Map
task and sent to the Shuffle&Sort phase.

So streaming implies an overhead, that is
negligible for complex (time consuming) tasks
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Streaming

NodeManager

launch g
A 4
task JYM

Child

run

MapTask
or

ReduceTask

. . |4
input ¢ | : output
key/values : | : key/values

stdin v :std out

‘e
‘e
‘e

launch | Streaming

process

node manager node




Word count in Python

 The mapper

#1/usr/bin/env/python
import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Reduce step, i.e. the input for reducer.py
#
# tab-delimited; the trivial word count 1is 1
print '%s\t¥%s' % (word, 1)
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#!/usr/bin/env/python

The reducer -

current_word = None
current_count = @
word = None

e Important: if Python is used for
MapReduce on Hadoop then # input comes from STDIN

for line in sys.stdin:
# remove leading and trailing whitespace

e pairs (k, [v1,..,vn]) are unfolded to a line = line.strip()
list of pairs (k’ v1),...,(k,vn) # parse the input we got from mapper.py
word = line.split('\t')[@]
« In practice each pair (k, vi) is a text count = line.split("\t®)[1]
line in stdin, where k and vi are # convert count (currently a string) to int
try:
separated by the tab character \t count = int(count)

except ValueError:

e The Reduce algorithm must identify # count was not a number, so silently
. : # ipgnore/discard this line
the groups of lines sharing the same k canEd nua

# this IF-switch only works because Hadoop sorts map output

o Fortunately lines are ordered on k by # by key (here: word) before it is passed to the reducer

shuffle-and-sort. if current _word == word:
current_count += count
, _ else:
* Notice that you do not have this if current_word:
unfolding/folding if you use Java for # write resuit ta STDOUT

print '#s\t%s' % (current _word, current count)
I\/IapReduce current_count = count
current word = word

# do not forget to output the last word if needed!

if current_word == word:
print "Zs\t%s' % (current word, current count)
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Scalability issues

e |deal scaling characteristics
e Twice the data, twice the running time
* [wice the resources, half the time
 Difficult to achieve in practice
e Synchronisation requires time
e Communication kills performance (network is slow!)
e Thus...minimise inter-node communication
e Local aggregation can help: reduce size of Map phase output
e Use of combiners can help in this direction
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Combiner

It is an additional function you are allowed to define and adopt in MapReduce

lts input has the shape of that of Reduce and its output has to be compatible with
that of Map (*)

Important: a local shuffle-and-sort is performed locally to prepare couples (k, [v1, ]
Like Reduce it performs aggregation
Differently from Reduce it is run locally, on slaves executing Map

Goal: pre-aggregate Map output pairs in order to lower number of pairs sent
(trough the network) to shuffle-and-sort

Attention: it is up to Hadoop to decide whether a Mapper node runs a Combiner

* 50 some of the Map nodes run the combiner, some do not; this is why we need
(*) above

« we will see in which cases the Combiner is triggered.
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Pseudo code with Combine

 Map(k, V)
for each win v
emit(w, 1)
Note that Combine is
» Combine(k,v) isomorphic to Reduce.
c=0 This is because the sum
for xin v operation performed by
C=0C+1 WordCount is associative.
emit(k, c)
We will see cases next where
. Reduce(k, V) things are more complex.
c=0
for x in v
C=C+X
emit(k, c)
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Spark



Motivation

= Both iterative and interactive queries need one
thing that MapReduce lacks

Efficient primitives for data sharing.

= In MapReduce, the only way to share data
across processing step is stable storage (disk)

= Replication also makes the system slow, but it is
necessary for fault tolerance.



Solution

HDFS HDFS HDFS HDFS HDFS

Had O0p Read Write Read Write Read
I\/IapReduce Iter. 1 lter. 2
Input

HSaF()j;)I’CI)(p @—[ Iter. 1 ]—»k[ lter. 2 ]—’k‘

Input




Hadoop
MapReduce

Hadoop
Spark

Input

Input

Solution

Query 1
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o| Results1 |

Results1 |

Query 2

—

—

Query 3
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| Results1 |

Resultsl

-

“‘-—...—-/—_

Resultsl

""-—.—.—-“/.—_

.| Resultsl
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Challenge

= How to design a distributed memory abstraction
that is both fault tolerant and efficient?

= Solution: Resilient Distributed Datasets (RDD)
- A distributed main-memory abstraction.
- Immutable collections of objects spread across a
cluster.
- Lineage among RDDs to enable their re-evaluation
in case of cluster node failures



Resilient Distributed Dataset

= An RDD is a data collection which is divided into a
number of partitions, which can be independently
processed.

LR S




Spark Processing engine

Sp qu

Spark Spark
Streaming GraphX MLlIib

Spark




Programming model

= Based on parallelizable operators.

= Parallelizable operators are higher-order functions
that execute user-defined functions in parallel, on
each partition of an RDD.

= There are two types of RDD operators :
transformations and actions.



Programming model

= Transformations : lazy operators that create new RDDs.

= Actions : lunch a computation and return a value to the
program driver or write data to the external storage

. RAM
Worker
B

Input Data

=P . RAM

Driver
)

*’J Worker
results e

. RAM Input Data
Worker W

= Implemented in Scala:

- a strongly and statically typed functional-OO language ==
- compiled and run over the JVM =
- designed at EPFL (Switzerland).

= Java and Python can be used too for Spark
programming.




Example

= Suppose that a web service is experiencing errors and a
operator wants to search terabytes of logs in the Hadooy
filesystem (HDFS) to find the cause.

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

= Actions can be used to count errors:

errors.count()

= Or counting errors mentioning MySQL.:

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()



Example

= Suppose that a web service is experiencing errors and a
operator wants to search terabytes of logs in the Hadooy
filesystem (HDFS) to find the cause.

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

= Actions can be used to count errors: FRELGISEEEEEEEI

memory only errors is

(simple static analysis)

errors.count()

lazy evaluation: errors s
actually calculated and put

= Or counting errors mentioning My SQ S A R

// Count errors mentioning MySQL: action is evaluated
errors.filter(_.contains("MySQL")).count()



Fault tolerance via lineage

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains(""HDFS"))
map(_.split(C’\t’)(3))
.collect()

[ lines ]
| filter(_.startsWith(‘ERROR”))
[ errors ]

l, filter(_.contains("HDFS”)))
[ HDFS errors ]

l map(_.split(\t’)(3))
[ time fields ]

the lineage graph enables RDD re-evaluation in

case of failure



RDD transformations
and actions

map(f :T=U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()
reduceByKey(f : (V,V) = V)
union()
)

)

)

)

)

)

RDD[T] = RDD|U]

RDD[T] = RDD|T]

RDD|[T] = RDDJ[U]

RDD[T] = RDDI|T] (Deterministic sampling)
RDD[(K, V)] = RDD[(K, Seq[V])]

RDDI[(K, V)] = RDDI[(K, V)]

Transformations (RDD[T],RDDI[T]) = RDDIT]
join( (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (V, W))]
cogroup( (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct( (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V=W RDDI[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
sort(c : Comparator[K] RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD[(K, V)]
count() RDDI[T] = Long
collect() RDD[T] = Seq|[T]
Actions reduce(f : (T,T) = T) RDD[T] =T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS




RDD transformations : Map

= All pairs are independently processed

B—

p—

B —

B—

h---l
————I

B

h---'

# passing each RDD element trough a function
nums = sc.parallelize([1,2,3])
squares = nums.map(lambda x: x *x Xx)

# selecting elements making a boolenba function returning true
even = squares.filter(lambda x : x % 2 ==0)

# map + flattening

m = nums.map(lambda x: range(x))

# [[e]l, [e, 1], [o, 1, 2]]

fm = nums.flatMap(lambda x: range(x))
# [0, 0, 1, 0, 1, 2]



RDD transformations : Reduce

= Pairs with identical key are grouped
= Each group is independently processed

===
L oF
> |

1 oF

h---l

Tl

h---.

“1-1-R-

'——fﬁ:Ij'

["Wp——

pets = sc.parallelize([("cat", 1), ("“dog", 1), ("cat", 2), ("dog", 3) 1)

pets.reduceByKey(lambda x, y : X +Yy)
# [(‘dog', 4), ('cat', 3)]

pets.groupByKey()
pets.groupByKey().map(lambda x : (x[0], list(xI[1])))
# [('dog', [1,3]), ('cat', [1, 2])]



RDD transformations : Join

= Equi-join on the key

B
)
- > [l |
m

“q.

visits = sc.parallelize( [("h", 2.3.4"), ("a", "3.4.5.6"), ("h", “1.3.3.1")] )
pageNames = sc.parallelize( [("h", “Home"), ("a", “About")] )

visits.join(pageNames)

# [('a', ('3.4.5.6', 'About')), ('h', ('1.2.3.4', Home')),
(‘h', ('1.3.3.1', 'Home'))]



RDD transformations : CoGroup

= Groups each input on key

= Groups with identical keys are processed

together
[ ==  =m
= |
> I
= [
Sl
visits = sc.parallelize([("h", “1.2.3.4"), ("a"
pageNames = sc.parallelize([("h", "Home"), ("a"

visits.cogroup(pageNames)
visits.cogroup(pageNames).map(lambda x

['About'])),

 (x[01,

(Ihl’

(

(['1.2.3.4"',

"3.4.5.6"), ("h", "1.3.3.1")] )

IIAboutll)’ (IIOII’ IIOtherll)])
list(x[1]1[@0]1), list(x[11I[11))))

'1.3.3.1'], ['Home'])),



Some experiments on
PageRank
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Borrowed from Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.
Matei Zaharia et al, NSDI 2012.



